Cosymplectic groupoids
نویسندگان
چکیده
A cosymplectic groupoid is a Lie with multiplicative structure. We provide several structural results for groupoids and we discuss the relationship between groupoids, Poisson of corank 1, oversymplectic 1.
منابع مشابه
K-Cosymplectic manifolds
In this paper we study K-cosymplectic manifolds, i.e., smooth cosymplectic manifolds for which the Reeb field is Killing with respect to some Riemannian metric. These structures generalize coKähler structures, in the same way as K-contact structures generalize Sasakian structures. In analogy to the contact case, we distinguish between (quasi-)regular and irregular structures; in the regular cas...
متن کاملn-groupoids and stacky groupoids
We discuss two generalizations of Lie groupoids. One consists of Lie n-groupoids defined as simplicial manifolds with trivial πk≥n+1. The other consists of stacky Lie groupoids G ⇒ M with G a differentiable stack. We build a 1–1 correspondence between Lie 2-groupoids and stacky Lie groupoids up to a certain Morita equivalence. We prove this in a general set-up so that the statement is valid in ...
متن کاملWarped product submanifolds of cosymplectic manifolds
Cosymplectic manifolds provide a natural setting for time dependent mechanical systems as they are locally product of a Kaehler manifold and a one dimensional manifold. Thus study of warped product submanifolds of cosymplectic manifolds is significant. In this paper we have proved results on the non-existence of warped product submanifolds of certain types in cosymplectic manifolds. M.S.C. 2000...
متن کاملSlim Groupoids
Slim groupoids are groupoids satisfying x(yz) ≈ xz. We find all simple slim groupoids and all minimal varieties of slim groupoids. Every slim groupoid can be embedded into a subdirectly irreducible slim groupoid. The variety of slim groupoids has the finite embeddability property, so that the word problem is solvable. We introduce the notion of a strongly nonfinitely based slim groupoid (such g...
متن کاملActions of vector groupoids
In this work we deal with actions of vector groupoid which is a new concept in the literature. After we give the definition of the action of a vector groupoid on a vector space, we obtain some results related to actions of vector groupoids. We also apply some characterizations of the category and groupoid theory to vector groupoids. As the second part of the work, we define the notion...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2023
ISSN: ['1879-1662', '0393-0440']
DOI: https://doi.org/10.1016/j.geomphys.2023.104928